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Abstract. Transport of dissolved tracers undergoing kinetic sorption in saturated porous
media is described on the basis of a dual-porosity model with heterogeneous and cross-
correlated sorption parameters, i. e., distribution coefficient and exchange rate. The
approach is a conceptual model for reactive transport in a medium with spatially varying
reaction capacity, given by the distribution coefficient, and spatially varying accessibility,
given by the exchange rate. We treat the sorption parameters as a stochastic process and
apply a perturbation approach. From the ensemble-averaged spatial moments of a plume,
we analytically derive formal expressions for time-dependent effective transport
parameters. For vanishing microdispersion the calculations are carried out up to second
order for the effective transport velocity ueff(t) and the effective dispersion coefficient
Deff(t). For large times the effective retardation is determined by the ensemble-averaged
distribution coefficient, whereas the effective dispersion is related to the sorption
parameters in a more complicated way depending on the variability of the exchange rate
and of the distribution coefficient. Effective sorption parameters are given. For
comparison we derive exact expressions for ueff(t) and Deff(t) in a homogeneous triple-
porosity model. Unlike the simpler homogeneous dual-porosity model, the triple-porosity
model yields a satisfactory description of the time-dependent dispersion of the
heterogeneous model. The appropriate sorption parameters for the triple-porosity model
are given as functions of the stochastic parameters.

1. Introduction

Homogeneous dual-porosity models with linear kinetic ex-
change between a mobile and an immobile zone have been
studied extensively in the literature. Among the transport sit-
uations described by dual-porosity models are solute transport
subject to kinetic sorption, diffusion into dead-end pores, and
advective exchange into lenses of very low conductivity, as well
as transport in fractured media. For the derivation of dual-
porosity models and their use see, for example, Douglas and
Arbogast [1990], Haggerty and Gorelick [1995], Sahimi [1995],
and Sardin et al. [1991].

Explicit solutions for the concentration distribution c( x , t)
in one and three dimensions for step and delta inputs are given
by de Smedt and Wierenga [1979] and Goltz and Roberts [1986],
respectively. These analytical solutions are based on integral
transformations and are limited to homogeneous dual-porosity
models. Adding a second immobile region already leads to
transformed solutions that can no longer be inverted analyti-
cally. Similarly, a heterogeneous distribution of sorption pa-
rameters defies an exact analytic treatment. In 1987, Goltz and

Roberts [1987] presented a detailed analysis of the effective
transport velocity and dispersion in homogeneous dual-
porosity and diffusion models, calculating both temporal and
spatial moments of the concentration distribution. Differences
between effective parameters based on spatial and temporal
moments have been found.

More recent studies focus on homogeneous multiregion
models. The review article of Sardin et al. [1991] investigates
the breakthrough curve (BTC), i.e., temporal moments of the
concentration distribution. The BTC is found to be quite in-
sensitive to the details of the microscopic sorption processes.
Haggerty and Gorelick [1995] show the equivalence of homo-
geneous diffusion models and multiregion models and present
semianalytical solutions for special flow conditions. Applica-
tion to Borden data leads to the conclusion that even in a
relatively homogeneous aquifer, the mass exchange process is
best modeled by a mixture of exchange rates.

Another class of studies investigates kinetic sorption in aqui-
fers with spatially variable conductivity. However, the sorption
parameters are still treated as constants. According to numer-
ical calculations by Selroos and Cvetkovic [1992], the effects of
kinetic sorption on dispersion are similar to macrodispersion
resulting from the variability in conductivity, rendering their
identification difficult if not impossible. Dagan and Cvetkovic
[1993] generalize Dagan’s [1988] theory of macrodispersion by
including linear and homogeneous kinetic sorption. Formal
expressions for the lower spatial moments are given. The dis-
persion coefficient consists of a term resulting from the kinetic
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exchange only and of a mixed term including both the sorption
kinetics and the variability of conductivity. For transport times
large compared to the exchange time and a characteristic het-
erogeneity time, dispersion of a Fickian type is found. Similar
results are given by Quinodoz and Valocchi [1993].

Hu et al. [1995] take into account a heterogeneous conduc-
tivity and a heterogeneous distribution coefficient while treat-
ing the exchange rate as constant. They present semianalytical
calculations for the effective velocity and dispersion as well as
for the skewness.

Our approach is a general conceptual model for reactive
transport in a medium with spatially varying reaction capacity,
given by the distribution coefficient, and spatially varying ac-
cessibility, given by the exchange rate. Hereby we focus on the
effects of heterogeneous and correlated sorption parameters
on transport in a constant flow field. We choose to keep the
flow velocity constant in order to isolate and better assess the
effects of the sorption heterogeneity. This assumption is not
crucial and the formalism can be extended to account for a
heterogeneous flow field. In the case of vanishing cross corre-
lations between the flow and the sorption processes the heter-
ogeneity of the flow field leads to the classical macrodispersion
results of Gelhar [1993], Dagan [1989], and others and super-
imposes linearly onto the effects of the sorption heterogeneity.

Note that our approach is also a conceptual model for a
nonadsorptive medium with very high contrasts in hydraulic
conductivity, as for instance, in a sandy aquifer containing
low-permeability clay lenses. In this scenario the log conduc-
tivity distribution is bimodal and has a variance much greater
than unity, defying the applicability of the classical theory of
macrodispersion. In a dual-porosity model the sandy soil can
be represented by the mobile regions, whereas the slow advec-
tive transport through the clay lenses can be modeled as solute
exchange into an immobile region. The sorption parameters
are then interpreted as “immobile capacity” and “accessibility”
to the lenses (see the discussion accompanying (3)).

Using a perturbation approach, we analytically calculate
time-dependent effective transport parameters on the basis of
the spatial moments of a plume. For comparison with the
heterogeneous dual-porosity model we exactly derive the time-
dependent effective transport velocity and dispersion coeffi-
cient for an equivalent homogeneous triple-porosity model
with two immobile zones. We finally derive the parameters of
this equivalent triple-porosity model from the statistics of the
sorption parameters.

2. Description of the Heterogeneous Model
As shown by Haggerty and Gorelick [1995], all standard first-

order two-region models are essentially the same. For simplic-
ity the following reduced formulation of the basic equations is
used.

 tg~ x , t! 1 f~ x! tg im~ x , t! 1 û¹g~ x , t! 2 ¹D̂¹g~ x , t! 5 0

(1a)

 tg im~ x , t! 5 a~ x!@ g~ x , t! 2 g im~ x , t!# (1b)

In this formulation, g and g im designate the mobile and the
immobile tracer concentrations, respectively. The first equa-
tion describes transport in the mobile phase with seepage ve-
locity û and dispersion coefficient D̂ . It also includes an ex-
change of solute into the immobile phase, a process which is

described by a linear relationship in the second equation. The
exchange rate a sets the fundamental timescale for the sorp-
tion or exchange process. We call f the distribution coefficient
since in the limit a 3 ` the given set of equations reduces to
a single transport equation which accounts for linear equilib-
rium sorption with distribution coefficient f.

The reduced equations can be cast into the form of the
standard physical first-order model by choosing

g 5 Rmcm û 5
u

Rm
D̂ 5

D
Rm

g im 5 Rmc im a 5
b

R imn im
f 5

R imn im

Rmnm

The subscripts m and im denote the mobile and the immobile
phases, respectively. Linear equilibrium sorption in either zone
is taken into account by the retardation factors Rm and R im.
The mobile and the immobile porosities are denoted by nm and
n im, and b is the exchange coefficient. To be consistent with
(1a) and (1b), the retardation factor in the mobile zone, Rm,
must be constant. The effects of a heterogeneous retardation
factor have been extensively investigated [Garabedian et al.,
1988; Dagan, 1989; Metzger et al., 1996], so the assumption is
not crucial (see the above discussion on the homogeneneity of
the flow).

The sorption parameters a and f are determined according
to the physical or chemical process described by the dual-
porosity model. In the case of diffusion into dead-end pores
the exchange rate is given by [van Genuchten, 1985; Parker and
Valocchi, 1986; Rao et al., 1980]

a 5 a*~f , T!
D9m
a2 (2)

where D9m is the diffusion coefficient valid in the porous me-
dium and a is a typical pore length. The correction factor a*
depends weakly on the distribution coefficient and an averag-
ing time T . Typical values in column experiments are f ' 0.1
and a ' 102 z z z 103 d21 [de Smedt and Wierenga, 1984].

The advective transport through lenses with very low con-
ductivity with respect to their surroundings can be modeled by
a solute exchange between two porosities. In this case one may
use [Kobus et al., 1992; Schäfer, 1991]

a 5
1

nmf S f

f 1 1D
2/3 3

2 1
K im

Km

K im

Km

uu u
L (3)

where Km and K im denote the conductivities of the two regions
and L is a typical length of the lenses. The parameter f 5
n im/nm is determined by the ratio of immobile to mobile water
content and can be interpreted as immobile capacity, while the
exchange rate a can be thought of as a measure of the acces-
sibility to the lenses. For clay lenses in a sandy aquifer (u '
0.1m/d , nm ' 0.2, f ' 0.1, K im/Km ' 1022 z z z 1023, L '
1m), exchange rates a ' 1022 z z z 1023 d21 may result.

For an instantaneous unit point source of solute injected
into the mobile region of a d-dimensional infinite medium,
(1a) and (1b) is supplemented by the following initial and
boundary conditions:

g~ x , t 5 0! 5 dd~ x! lim
uxu3`

g~ x , t! 5 0 (4)

g im~ x , t 5 0! 5 0 lim
uxu3`

g im~ x , t! 5 0 (5)
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An implicit solution of (1a) and (1b) then is derived by solving
the rate equation (1b), inserting g im( x , t) into (1a), and trans-
forming the resulting differential equation into an integral
equation.

g~ x , t! 5 g0~ x , t! 2 E dx9E dt9g0~ x 2 x9 , t 2 t9!f~ x9! t9

z E
0

t9

dta~ x9!e2a~ x9!~t92t!g~ x9 , t! (6)

The propagator g0 denotes the Green’s function for conserva-
tive transport without exchange into an immobile region (f3
0 and a 3 `). It is a constantly spreading d-dimensional
normal distribution given by

g0~ x , t! 5
Q~t!

Î~4pt!d det D̂
exp H2

1
4t ~ x 2 ût!D̂21~ x 2 ût!J

(7)

where Q(t) is the Heavyside step function. For negative times,
g0 vanishes; for t . 0 it is normalized to unit mass.

3. Definition of Effective Transport Parameters
The heterogeneous structure of the sorption parameters

a( x) and f( x) is modeled by a two-component stationary and
ergodic stochastic process. The aquifer is regarded as one
realization of an ensemble, reflecting the stochastic properties
of the process [Dagan, 1989; Gelhar, 1993; van Kampen, 1981].

To obtain a consistent description of the effective behavior
of the solute plume, the quantities of interest are calculated in
each realization. We then derive the effective parameters by
averaging over the ensemble. Sometimes, the “effective” be-
havior is derived from the moments of the ensemble-averaged
concentration distribution. This approach is mathematically
less demanding but contains artificial effects such as dispersion
due to the spreading of the center of mass movement in dif-
ferent realizations. For a more detailed discussion, see, for
example, [Kitanidis, 1988; Dagan, 1990; Rajaram and Gelhar,
1993; Metzger et al., 1996].

Because of the heterogeneous structure of the sorption pa-
rameters, no exact solution of (1a) and (1b) is known. Yet, the
calculation of low-order spatial moments of the normalized
concentration distribution in the mobile phase provides a
crude description of the behavior of the solute plume. The first
moment and the second and third central moments in each
realization are given by

m i
~1!~t! ; E xi p~ x , t! dx (8a)

m ij
~2!~t! ; E @ xi 2 m i

~1!~t!#@ xj 2 m j
~1!~t!# p~ x , t! dx (8b)

m ijk
~3!~t! ; E @ xi 2 m i

~1!~t!#@ xj 2 m j
~1!~t!#

z @ xk 2 mk
~1!~t!# p~ x , t! dx (8c)

with

p~ x , t! ;
g~ x , t!

E g~ x9 , t! dx9

(9)

The effective transport velocity and the effective dispersion
coefficient then follow from the time-dependent spatial mo-
ments by differentiation with respect to time and averaging the
resulting expressions over the ensemble.

ui
eff~t! ;  tm i

~1!~t! Dij
eff~t! ; 1

2
 tm ij

~2!~t! (10)

The overbar denotes the ensemble average. Using these effec-
tive transport parameters, effective sorption parameters will be
derived later.

To describe the asymmetry of the concentration distribution
relative to its width, we define a skewness parameter

S~t! ; H m111
~3! ~t!

@m11
~2!~t!#3/ 2J (11)

where m111
(3) (t) denotes the third central moment in the direc-

tion of the 1 axis. Negative skewness indicates that the maxi-
mum of the concentration distribution is ahead of its center of
mass. This situation corresponds to the usually observed tail-
ing.

It is important to note that the effective transport parame-
ters are only illustrating the behavior of the low-order mo-
ments of the solute plume. We do not intend to use time-
dependent effective transport parameters together with the
classical advection-dispersion equation. Rather will we derive
effective sorption parameters which can be used in simple
homogeneous multiporosity models.

4. Perturbation Approach
From (6) we shall construct a perturbation series expansion

around g0 by iteration. Recall that g0 is the Green’s function
for transport without sorption. This implies that the sorption
process as a whole is treated as a perturbation. In a second step
we will then expand the heterogeneous sorption parameters
around their mean values. At first glance it might seem more
natural to expand around the Green’s function of the homo-
geneous dual-porosity model rather than around g0. However,
this is not analytically tractable because of the complicated
structure of the Green’s function of the dual-porosity model
[Goltz and Roberts, 1986]. As we shall see later, our double-
perturbation approach leads to the same results in the limit of
large transport times and to good approximations at finite
times (see the discussion accompanying (19) and (20)).

The implicit solution (6) is now expanded into a perturba-
tion series by inserting g iteratively into the right-hand side.
This yields a series

g~ x , t! 5 g0~ x , t! 1 !~ x , t! 1 @~ x , t! 1 23 (12)

The expressions for ! and @ are given in Appendix A. Terms
linear in ! are referred to as first-order terms. Expressions
linear in @ (or quadratic in !) will be called second-order
terms. The series (12) is truncated after the second order, and
all contributions of third and higher orders in the iteration,
denoted by 23, are omitted. Combining (12) with a geometric
series expansion of 1/*g ' 1/(1 1 *! 1 *@) yields an
expansion for the normalized distribution p( x , t).
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p~ x , t! 5 g0~ x , t! 1 F !~ x , t! 2 g0~ x , t!E !~ x9 , t! dx9G
1 F @~ x , t! 2 g0~ x , t!E @~ x9 , t! dx9G
1 F g0~ x , t!S E !~ x9 , t! dx9D 2

2 !~ x , t!E !~ x9 , t! dx9G 1 23 (13)

In a second step we now decompose the sorption parameters
into mean values and fluctuations:

a~ x! 5 a# 1 h~ x! f~ x! 5 f# 1 w~ x! (14)

The correlation functions of the fluctuations are given by

h~ x9!h~ x0! 5 sa
2waa~ x9 2 x0! w~ x9!w~ x0! 5 sf

2 wff~ x9 2 x0!

(15)
h~ x9!w~ x0! 5 qwaf~ x9 2 x0!

where the w(i) are dimensionless functions and normalized at
the origin, w(0) 5 1. The relative strength of the cross cor-
relations between a and f is given by the correlation coeffi-
cient, defined as

r ;
q

sasf

(16)

The derivation of the spatial moments is now straightforward if
we assume that the fluctuations around the mean values are
small, i.e., sa

2 ,, a# 2 and sf
2 ,, f# 2, and if we consequently

approximate the stochastic process by the mean values and the
correlation functions (15).

Without loss of generality the direction of the 1 axis is
chosen parallel to the seepage velocity, û i 5 ûd1i. The effec-
tive transport velocity will therefore be of the form ui

eff 5
ueffd1i. For simplicity, microdispersion is assumed to be iso-
tropic, D̂ij 5 D̂d ij. Starting from (13), we derive the spatial
moments defined in (8). Expanding these expressions with
respect to the random fluctuations of the sorption parameters
(14) and averaging over the disorder ensemble, a lengthy but
elementary calculation yields the expressions for the moments
given in Appendix B. The integral representations given there
are valid up to first order in the case of finite microdispersion
and up to second order for vanishing microdispersion. From
these integral representations the time-dependent effective
transport parameters were derived analytically using the alge-
bra software mathematica (Wolfram Research). Exponential

type isotropic correlation functions w(i)( x) 5 exp (2 ux u/,(i))
were used.

5. Dimensionless Parameters, Validity
at Finite Times

In this section we briefly discuss some necessary conditions
to be fulfilled if the perturbation expansion (13) and the sto-
chastic description at finite times are to make sense. By dimen-
sional analysis the expansion parameter of the series expansion
(12) is found to be f( x)a( x)D̂/û2. A necessary condition to
justify the truncation of this series is therefore the smallness of
g0 [ f# a# D̂/û2 ,, 1.

For a further analysis, dimensionless parameters are intro-
duced (Table 1). To simplify the discussion, the correlation
lengths of the sorption parameters are set equal to ,. In the
case of a homogeneous dual-porosity model the large-time
longitudinal dispersion coefficient contains the additive term
û2f# /[a# (1 1 f# )3], resulting from sorption kinetics [Goltz and
Roberts, 1987]. The parameter g1 compares this dispersive ef-
fect to microdispersion. The use of dual-porosity models is
especially interesting for relatively strong dispersion resulting
from sorption kinetics, i.e., g1 ,, 1. In this case the expansion
parameter g0 5 g1 f# 2/(1 1 f# )3 is small, too.

The time evolution of the transport parameters takes place
with a typical timescale, given by the exchange time a# 21. For
times large compared to a# 21 the effective transport velocity
and dispersion coefficient reach limiting values (see, e.g., Fig-
ure 1). To obtain a meaningful time evolution from the sto-
chastic description, the plume has to “experience the aquifer”
within times small compared to a# 21. Experiencing the aquifer
means that the effective quantities become independent of the
special realization in which they are calculated or measured.
This can strictly be valid only for t 3 ` , when the advective
transport has covered infinitely many correlation lengths and
the plume has thus experienced the entire aquifer. In practice,
however, this limit might be reached earlier. The parameter g2

compares the advective time for transport over one correlation
length to the exchange time. If g2 ,, 1, the time evolution of
the effective transport parameters is slow compared to the
advective transport over one correlation length. A stochastic
description of the time evolution is then justified. Note that the
validity of the results for t 3 ` is independent of this restric-
tion.

6. Results and Discussion
6.1. Heterogeneous Model for t 3 `

For vanishing microdispersion, ueff(t) and Deff(t) were cal-
culated as discussed above. The large-time limits of the effec-
tive transport parameters are

Table 1. Dimensionless System Parameters

Parameter Description Comments

g1 ; D̂YS û2f#

a# ~1 1 f# !3D microdispersion
dispersion from sorption kinetics

in particular g1 ,, 1 interesting

g2 ;
a# ,

uûu
advective time
exchange time

g2 ,, 1 necessary for stochastic description at finite t
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lim
t3`

ueff~t! 5 û~1 2 f# 1 f# 2! 1 23 (17)

lim
t3`

DL
eff~t! 5

û2f#

a# F 1 1
sa

2

a# 2 2 r
sasf

a# f#
2

h3

a# 3 1
h2w

a# 2f#

2 3f# S 1 1
sa

2

a# 2 2 r
sasf

a# f#
D G 1 23 (18)

Obviously, (17) and (18) are series expansions in f# from which
we can a posteriori derive the necessary condition f# , 1 for the
convergence of these series. In the limiting case of spatially
constant sorption parameters, which implies sa

2 5 sf
2 5 h3 5

h2w 5 0, the results reproduce the corresponding expansion
with respect to f of the exact solution for the homogeneous
model [Goltz and Roberts, 1987]. Recollecting these contribu-
tions from the homogeneous model allows us to partially sum
up the expansion in f# . We get

lim
t3`

ueff 5
û

~1 1 f# !
(19)

lim
t3`

DL
eff 5

û2f#

a# ~1 1f# !3 S 1 1
sa

2

a# 2 2 r
sasf

a# f#
2

h3

a# 3 1
h2w

a# 2f#
D (20)

This procedure amounts to considering the perturbation ex-
pansion around the solution of the homogeneous dual-porosity
model. One is left with the approximation of small deviations
of the sorption parameters from their mean values.

From (19) we see that the effective retardation is given by
the ensemble average of the retardation factor (1 1 f# ) and
not by its harmonic mean, which would yield an expansion
(1 1 f)21 ' 1 2 f# 1 f# 2 1 sf

2 contrary to (17). This is
consistent with most results for equilibrium sorption [Garabe-
dian et al., 1988; Dagan, 1989; Metzger et al., 1996] but contra-
dicts the findings of Kabala and Sposito [1991]. This point is
discussed in more detail by Metzger et al. [1996].

Figure 1. Effective transport velocity, effective dispersivity, and longitudinal second central moment for (1)
the heterogeneous model up to second order, (2) the effective homogeneous dual-porosity model, and (3) the
triple-porosity model. Correlation between a and f is assumed to be positive (r 5 11). The other parameters
are û 5 0.1m/d , D̂ 5 0, a# 5 0.01d21, f# 5 0.1, sa

2 /a# 2 5 sf
2 /f# 2 5 0.3, h3 5 h2w 5 0, ,aa 5 ,af 5

,ff 5 1m , aeff 5 0.01d21, feff 5 0.1, f1 5 0.077, f2 5 0.023, a1 5 0.0155d21, and a2 5
0.0045d21.
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The corrections to the large-time effective longitudinal dis-
persion coefficient which are generated by the heterogeneity of
the medium are dominated by the fluctuations in the exchange
rate. As a result, the dispersion is usually larger than it would
be in a homogeneous medium with constant parameters a# and
f# . A possible asymmetry in the distribution of exchange rates
is taken into account by its third central moment h3. A small
portion of very large exchange rates leads to an increase in sa

2

but also yields a positive h3 such that these very large exchange
rates have little effect on dispersion. The correlation coeffi-
cient r, defined in (16), weakens or strengthens the dispersion
according to its sign. If small exchange rates are more likely to
appear in combination with large distribution coefficients
(r 5 21), then the effective dispersion is enhanced compared
to the dispersion in a homogeneous medium with parameters
a# and f# . Higher-order cross correlations are taken into ac-
count by the term h2w.

In the order of approximation used the correlation lengths
and therefore the spatial structure do not explicitly enter the
large-time effective transport parameters. Also, note that the
absence of microdispersion and the parallel flow field lead to
an effectively one-dimensional system with longitudinal mixing
due to the kinetic sorption. For a3 ` the results (17) and (18)
are consistent with the findings of Metzger et al. [1996] for a
one-dimensional system with equilibrium sorption. In two and
three dimensions, Metzger et al. [1996] find additive contribu-
tions to DL

eff of the form ,ffsf
2 û/(1 1 f# )2. We would also

expect such terms to appear if we included transverse mixing.
However, we focus on the corrections discussed in the previous
paragraph which do not contain the correlation lengths explic-
itly. They are dominant in some cases, for example, in the case
of advective transport through clay lenses (see the discussion
accompanying (3)).

Nevertheless, this does not mean that one can neglect the
inherent spatial structure of the medium and simply deal with
an ensemble of media with random but spatially constant sorp-
tion parameters. The effective retardation factor in this case
would be determined by the harmonic mean, which is wrong as
discussed above. Similarly, the ensemble average over the
large-time effective dispersion coefficient of these media
would lead to

S f

a~1 1 f!3D
<

f#

a# F 1 1
sa

2

a# 2 2 r
sasf

a# f#
2 3f# S 1 1

sa
2

a# 2 2 2r
sasf

a# f#
1

sf
2

f# 2D G
where we have set h3 5 h2w 5 0 for clarity. This expansion
differs from our results (equation (18)). It is therefore impor-
tant to consider the stochastic field as a fixed spatial structure
on which the dynamics of the system have to be calculated. In
this respect the spatial structure is implicitly contained in our
results.

In the large-time limit the results for the heterogeneous
model correspond to those of a homogeneous dual-porosity
model with appropriately chosen effective sorption parameters
aeff and feff. Comparing (19) and (20) with the exact results for
the homogeneous model yields

feff 5 f# aeff 5
a#

S 1 1
sa

2

a# 2 2 r
sasf

a# f#
2

h3

a# 3 1
h2w

a# 2f#
D (21)

The effective distribution coefficient is given by the ensemble-
averaged distribution coefficient, whereas the effective ex-
change rate includes cross correlations in the case of hetero-
geneous f. For larger variance sa

2/a# 2 the effective exchange
rate decreases because of the inverse proportionality between
exchange rate and dispersion. For negative correlation be-
tween a and f the effective exchange rate is diminished be-
cause the smaller exchange rates a( x) are more likely to ap-
pear in combination with the larger immobile capacities f( x).

The given effective sorption parameters are not meant to be
correct in the sense of strict homogenization. They allow the
reproduction of the large-time limits of the effective transport
velocity and dispersion coefficient, but no conclusions about
time evolution or higher moments can be drawn a priori.

The ensemble average skewness (equation (11)) was calcu-
lated up to first order with nonvanishing microdispersion. Note
that in first order the spatial correlation structure does not
come into play. The asymptotic behavior is given by

S~t!3
t3`

6 S t0

t D
1/ 2

(22)

with

t0 5 H F 12
D̂ûf#

a# S 1 1
sa

2

a# 2 2 r
sasf

a# f# D
2 6

û3f#

a# 2 S 1 1 3
sa

2

a# 2 2 2r
sasf

a# f# D G 2J
z H F 2D̂~1 2 f# ! 1 2

û2f#

a# S 1 1
sa

2

a# 2 2 r
sasf

a# f# D G 3J 21

Although reaching zero for infinite times, the skewness van-
ishes extremely slowly compared with the typical timescale a# 21

for ueff and DL
eff to reach their asymptotic values. The sign of

the asymptotic skewness is given by the sign of the third central
moment of the mobile concentration distribution (square
bracket in the numerator). It is negative if the dispersion from
sorption kinetics dominates over the microdispersion.

6.2. Time Evolution of the Effective Transport Parameters

As outlined in section 4, time-dependent effective transport
parameters have been calculated analytically. However, the
resulting expressions are lengthy and not very illuminating, so
instead of giving the explicit formulae, we discuss the relevant
results using the corresponding plots.

For a first set of stochastic parameters, Figure 1 shows the
effective transport velocity, the effective longitudinal disper-
sivity AL

eff(t) [ DL
eff(t)/ueff(t), and the second central mo-

ment of the heterogeneous dual-porosity model, plotted
against the dimensionless time aefft . For comparison, exact
expressions for an effective homogeneous dual-porosity model
with sorption parameters aeff and feff (21) are also shown. In
addition, the plots include the homogeneous triple-porosity
model which will be discussed below.

The effective velocity of the solute decreases from its initial
value û , the transport velocity in the mobile phase, to the
large-time limit as the solute undergoes exchange into the
immobile phase where it is retarded. The time for this process
to reach equilibrium is ;10/aeff. With regard to the effective
velocity the differences between the heterogeneous and the
homogeneous dual-porosity models are small. Moreover, the
center of mass position (not shown) is found to be practically
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identical. This is due to the fact that for short times the ho-
mogeneous dual-porosity model shows smaller retardation
than the heterogeneous model, whereas for intermediate times
the opposite is true. Integration of the effective velocity to
obtain the center of mass position smoothes out the differ-
ences. The above statements lead to the conclusion that with
respect to effective retardation the heterogeneous model
might be replaced by a homogeneous dual-porosity model us-
ing the effective sorption parameters given above. However,
this is no longer valid if dispersion is considered.

The effective dispersivity increases from zero, microdisper-
sion was assumed to vanish, to its limiting value. Note that for
the heterogeneous model the plotted limiting values are given
by (17) and (18), not by (19) and (20). Unfortunately, for the
general time-dependent effective transport parameters a sim-
ple resummation of the series in f# , as discussed for the large-
time limit, cannot be performed. In Figure 1, perfect positive
correlation between the exchange rate and the distribution
coefficient is assumed (r 5 11). This means that large a are
more likely to appear in combination with large f. Since dis-

persion due to sorption kinetics is proportional to f/a, each
pair (a( x), f( x)) contributes with about the same amount to
the effective dispersion. But this contribution takes effect at
different times because the typical timescale is of the order of
1/a. For this reason, AL

eff reaches its large-time limit in several
steps, a behavior that cannot be reproduced by a homogeneous
dual-porosity model.

The second central moment is also shown in Figure 1. This
measurable quantity directly describes the spreading of the
solute plume. Replacing the heterogeneous model by an effec-
tive homogeneous dual-porosity model overestimates the sol-
ute spreading.

The situation for perfect negative correlation (r 5 21) be-
tween a and f is shown in Figure 2. Apart from the previously
discussed fact of slightly different large-time limits due to the
limitations of the perturbation approach, ueff(t) and AL

eff(t) of
the heterogeneous and homogeneous models do not differ
significantly. For negative correlation, small exchange rates are
more likely to appear in combination with large distribution
coefficients. In this case, f/a, and therefore the effective dis-

Figure 2. Effective transport parameters and longitudinal second central moment. The correlation between
a and f is assumed to be negative (r 5 21). The other stochastic parameters are the same as in Figure 1, but
f2 5 feff 5 0.1, f1 5 0, and a2 5 aeff 5 0.00625d21.
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persion, is completely dominated by the small exchange rates.
Finally, it can be observed that the time needed for the effec-
tive transport parameters to fully reach their limiting values is
only ;5/aeff, whereas for r 5 11 it takes ;10/aeff. Note that
aeff is different in both cases.

Figure 3 shows the skewness of the heterogeneous and the
effective homogeneous dual-porosity model for perfect posi-
tive and negative correlation, respectively. The plots result
from the first-order expressions given in Appendix B. Micro-
dispersion has a very strong influence on the skewness for short
times. For vanishing microdispersion, skewness diverges to-
ward minus infinity as t 3 0. Consequently, a nonvanishing
microdispersion was chosen.

In contrast to the previous plots a logarithmic time axis is
used to emphasize how slowly the skewness vanishes with time.
Maximum skewness prevails until the effective transport pa-
rameters have reached their large-time limits. In the analysis of
Hu et al. [1995], skewness is only plotted up to this time,
suggesting that it will remain constant. Since their seepage
velocity is random but their exchange rate is constant, the
results are not fully comparable. However, a comprehensive
explanation of skewness behavior due to sorption kinetics must
take larger times into account.

As might be expected from the previous discussion, the
effective homogeneous dual-porosity model cannot fully de-
scribe the skewness in the heterogeneous model for a positive
correlation between a and f, whereas for a negative correla-
tion the difference between the models is hardly visible.

As a final comment, it should be noted that the analytical
solutions were derived for arbitrary values of the correlation
coefficient r. Indeed, the correlation can be virtually anything
depending on the physical scenario which is described by the

dual-porosity model. Perfect positive and perfect negative cor-
relation scenarios were plotted because they represent limiting
cases with respect to the effects on the transport behavior.

6.3. Homogeneous Triple-Porosity Model

In the section 6.2 we saw that a homogeneous dual-porosity
model cannot adequately reproduce the time evolution of the
dispersion in the heterogeneous model. Our aim now is to
derive more refined homogeneous sorption parameters, re-
lated to the stochastic properties of the medium, that allow a
better description of the dispersion in the heterogeneous
model within a homogeneous framework. We therefore inves-
tigate a homogeneous triple-porosity model with two immobile
zones in parallel. Figure 4 shows a schematic overview of the
models. In the triple-porosity model, exchange takes place
from the mobile zone into two immobile zones with constant
sorption parameters a1, a2, f1, and f2. The basic equations of
the parallel triple-porosity model are

 tg~ x , t! 1 f1 tg im,1~ x , t! 1 f2 tg im,2~ x , t!

5 ¹D̂¹g~ x , t! 2 û¹g~ x , t! (23a)

 tg im, j~ x , t! 5 a j@ g~ x , t! 2 g im, j~ x , t!# j 5 1, 2 (23b)

The derivation of the effective transport parameters is de-
scribed in Appendix C. Results for a model with two immobile
zones arranged in series can be derived analogously [Reichle,
1996]. The large-time limits for the parallel triple-porosity
model are

lim
t3`

ueff 5
û

1 1 f tri
eff (24)

Figure 3. Skewness for the heterogeneous (solid) and the effective homogeneous (dashed) dual-porosity
models. The correlation between a and f is assumed positive (r 5 11) in the upper and negative (r 5 21)
in the lower plot. The other parameters are û 5 0.1m/d , D̂ 5 0.01m2/d , a# 5 0.01d21, f# 5 0.1, sa

2 /a# 2 5
sf

2 /f# 2 5 0.3, feff 5 0.1, aeff 5 0.01d21 for r 5 11 and aeff 5 0.00625d21 for r 5 21.
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lim
t3`

DL
eff 5

D̂
1 1 f tri

eff 1
û2

a tri
eff

f tri
eff

~1 1 f tri
eff!3

(25)

lim
t3`

DT
eff 5

D̂
1 1 f tri

eff

with

f tri
eff 5 f1 1 f2

f tri
eff

a tri
eff 5

f1

a1
1

f2

a2
(26)

As expected, the large-time effective distribution coefficient is
given by the sum of the distribution coefficients of the two
immobile regions. Interpretation of a21 as exchange time leads
to the conclusion that the large-time effective exchange time is
the weighted mean of the exchange times of the two immobile
regions, where the respective distribution coefficients are used
as weights. The findings are consistent with the effective pa-
rameters derived by Sardin et al. [1991] via transfer functions.

Given the large-time effective transport parameters, we can
now try to find the homogeneous sorption parameters {a1, a2,
f1, f2} related to the stochastic properties of the medium. In
order to yield the same large-time effective transport param-
eters the effective sorption parameters (21) and (26) must be
identical.

aeff 5 a tri
eff feff 5 f tri

eff (27)

Since from the previous section we know that the correlation
coefficient r plays a major role in the time evolution of dis-
persion in the heterogeneous model, we choose the following
additional condition:

f1 5
~f# 1 sf!

2
~1 1 r!

2 (28)

For perfect negative correlation, (28) assigns a zero distribu-
tion coefficient to the first immobile phase, thus reducing the
triple-porosity model to a dual-porosity model. For perfect
positive correlation both immobile phases contribute compa-
rably to the effective dispersion. The distribution coefficients
are then f1,2 5 1

2
(f# 6 sf). The linear relationship (28) for f1

is a first approximation to match these requirements, and cer-
tainly, no exact equivalence of the models is claimed. So far,
the choice of a1 and a2 is not yet unique. As a last condition,
we add

a1 5 a# ~1 1 c! a2 5 a# ~1 2 c! (29)

From (27), (28), and (29) the parameter c can be easily de-
rived.

c 5
2A2 1 ÎA2

2 2 4A1A3

2 A1

where

A1 5 S 1 1
sa

2

a# 2 2 r
sasf

a# f#
2

h3

a# 3 1
h2w

a# 2f#
D

A2 5 F 1 2
1
2 S 1 1

sf

f# D ~1 1 r!G A3 5 ~1 2 A1!

For sa
2 5 0 we get c 5 0, therefore a1 5 a2, and the triple-

porosity model is identical to a dual-porosity model.
With the given parameter set {a1, a2, f1, f2} we can now

compare the time-dependent effective transport velocity and
dispersivity of the heterogeneous and the homogeneous mod-
els. Figure 1 shows that for r 5 11 the effective transport
velocity in the heterogeneous model is better reproduced by
the homogeneous triple-porosity model than by the homoge-
neous dual-porosity model. Moreover, Figure 1 shows that the
dispersive behavior of the heterogeneous model for r 5 11 is
adequately described by the triple-porosity model. The disper-
sivity as well as the second central moment differ only slightly.
Finally, from Figure 2 we learn that for r 5 21 all models show
the same effective transport behavior.

7. Summary and Conclusions
Within an analytical framework a dual-porosity model with

heterogeneous and cross-correlated sorption parameters was
investigated. Time-dependent effective transport parameters
based on spatial moments were derived using a perturbation
approach. The effective transport velocity, dispersion coeffi-
cient, and skewness were calculated up to first order. For
vanishing microdispersion the effective velocity and dispersion
coefficient were calculated up to second order. Our main re-
sults are

1. From the large-time effective transport parameters, ef-
fective sorption parameters were derived (equation (21)). The
effective distribution coefficient is given by the ensemble-
averaged distribution coefficient, whereas the effective ex-
change rate includes cross correlations in the case of hetero-
geneous f. Effective parameters cannot be obtained by
averaging over an ensemble of media with random but spatially
constant sorption parameters.

2. For negative correlation between the sorption parame-
ters the effective homogeneous dual-porosity model allows a
good description of the heterogeneous model. However, for
positive correlation, significant differences between the models

Figure 4. Schematic description of the models.
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occur at finite times. A better reproduction of the heteroge-
neous model within a homogeneous framework is provided by
a triple-porosity model. The sorption parameters for this
model can be expressed as functions of the stochastic proper-
ties of the medium.

3. The skewness is found to vanish very slowly compared to
the time needed for the effective transport velocity and dis-
persion coefficient to reach their asymptotic values. The cor-
responding timescale is given in (22).

Although the analysis of the heterogeneous model is limited
to small variability in the sorption parameters, insight was
gained into the developing transport velocity, dispersion, and
skewness through an analytical approach. In addition, formu-
lae for the conceptual approximation of a heterogeneous me-
dium by effective homogeneous models are given. The assump-
tions of a constant flow field and a constant retardation factor
for the mobile phase are not crucial for the analysis. In future
work, cross correlations between a heterogeneous flow field
and heterogeneous sorption parameters can be investigated
with our approach.

Appendix A: Some Definitions
The first- and second-order terms in the perturbation series

g 5 g0 1 ! 1 @ 1 23 are

!~ x , t! ; 2E dx9 E dt9g0~ x 2 x9 , t 2 t9! t9

z E
0

t9

dtf~ x9!a~ x9!e2a~ x9!~t92t!g0~ x9 , t!

@~ x , t! ; 1E dx9E dt9g0~ x 2 x9 , t 2 t9! t9

z E
0

t9

dtf~ x9!a~ x9!e2a~ x9!~t92t!

z E dx0E dt0g0~ x9 2 x0 , t 2 t0! t0

z E
0

t0

dt9f~ x0!a~ x0!e2a~ x0!~t02t9!g0~ x0 , t9!

When averaging the moments, the following terms are encoun-
tered.

f~ x9!a~ x9!e2a~ x9!u < a~u !

f~ x9!a~ x9!e2a~ x9!u9f~ x0!a~ x0!e2a~ x0!u0

< $b~u9 , u0! 1 O
i

c ~i!~u9 , u0!w ~i!~ x9 2 x0!%

where

a~u ! ; e2a# uF a# f# 2 sa
2f# S u 2

a#

2 u2D 1 q~1 2 a# u !

1 h3f# S u2

2 2
a#

6 u3D 2 h2wS u 2
a#

2 u2D G

b~u9 , u0! ; a# f# e2a# ~u91u0!

z Hf# F a# 2 sa
2S u9 1 u0 2

a#

2 ~u92 1 u02!D G
1 q~2 2 a# ~u9 1 u0!!J

c ~aa!~u9 , u0! ; f# 2sa
2e2a# ~u91u0!~1 2 a# u9!~1 2 a# u0!

c ~af!~u9 , u0! ; a# f# qe2a# ~u91u0!@2 2 a# ~u9 1 u0!#

c ~ff!~u9 , u0! ; a# 2sf
2 e2a# ~u91u0!

Appendix B: Integral Representations
of the Moments

Up to first order the following integral representations for
the moments result.

m1
~1!~t! 5 1ûF t 2 E

0

t

dt9~t 2 2t9!a~t9!G 1 22

m11
~2!~t! 5 12D̂F t 2 E

0

t

dt9~t 2 2t9!a~t9!G
1 û2E

0

t

dt9~t2 2 2t92!a~t9!

2 û2E
0

t

dt9E
0

t9

dt02~t 2 t9!a~t0! 1 22

m111
~3! ~t! 5 16D̂ûE

0

t

dt9~t2 2 2t92!a~t9!

2 6D̂ûE
0

t

dt9E
0

t9

dt02~t 2 t9!a~t0!

2 û3E
0

t

dt9~t3 2 2t93!a~t9!

1 û3E
0

t

dt9E
0

t9

dt03~t 2 t9!~t 2 t9 1 2t0!a~t0! 1 22

Up to second order and for vanishing microdispersion the
following integral representations for the moments result.

lim
D̂30

m1
~1!~t! 5 1ûF t 2 E

0

t

dt9~t 2 2t9!a~t9!G
2 ûE

0

t

dt9E
0

t9

dt0~t 2 2t0!b~t 2 t9 , t9 2 t0!

1 ûE
0

t

dt9E
0

t9

dtE
0

t

dt0b~t9 2 t , t 2 t0!
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2 ûE
0

t

duE
0

t

d ũ~t 2 2u !b~u, ũ! 2 ûE
0

t

dt9

z E
0

t2t9

dt0~t9 1 t0! O
~i!

w ~i!@û~t 2 t9 2 t0!#c ~i!~t9 , t0!

1 ûE
0

t

dt9E
0

t9

dtE
0

t92t

dt0 O
~i!

w ~i!@û~t9 2 t 2 t0!#

z c ~i!~t , t0! 1 ûE
0

t

dt9E
0

t2t9

dt0E
0

t0

du

z O
~i!

w ~i!@û~t 2 t9 2 t0!#c ~i!~t9 , u ! 1 ûE
0

t

duE
0

t

d ũ u

z O
~i!

w ~i!@û~u 2 ũ!#c ~i!~u , ũ! 2 ûE
0

t

dt9E
0

t9

duE
0

t

d ũ

z O
~i!

w ~i!@û~u 2 ũ!#c ~i!~t9 2 u , t 2 ũ! 1 23

lim
D̂30

m11
~2!~t! 5 1û2E

0

t

dt9~t2 2 2t92!a~t9!

2 û2E
0

t

dt9E
0

t9

dt02~t 2 t9!a~t0!

1 û2E
0

t

dt9E
0

t9

dt0@2~t 2 t0!2 2 t2#b~t 2 t9 , t9 2 t0!

2 û2E
0

t

dt9E
0

t9

dtE
0

t

dt02~t9 2 2t0!b~t9 2 t , t 2 t0!

2 û2E
0

t

dt9E
0

t9

dtE
0

t

dt02~t9 2 t!b~t 2 t9 , t 2 t0!

1 û2E
0

t

duE
0

t

d ũ@4 ũ~t 2 u ! 2 2u2#b~u , ũ!

2 û2E
0

t

dt9E
0

t9

duE
0

t

d ũ2~t 2 t9!b~u , ũ! 1 û2E
0

t

dt9

z E
0

t2t9

dt0~t9 1 t0!2 O
~i!

w ~i!@û~t 2 t9 2 t0!#c ~i!~t9 , t0!

2 û2E
0

t

dt9E
0

t9

dtE
0

t92t

dt02~t 1 t0!

z O
~i!

w ~i!@û~t9 2 t 2 t0!#c ~i!~t , t0! 2 û2E
0

t

dt9E
0

t2t9

dt0

z E
0

t0

du2~t9 1 u ! O
~i!

w ~i!@û~t 2 t9 2 t0!#c ~i!~t9 , u !

1 û2E
0

t

dt9E
0

t9

dtE
0

t92t

dt0E
0

t0

du2

z O
~i!

w ~i!@û~t 2 t 2 t0!#c ~i!~t , u !

2 û2E
0

t

duE
0

t

d ũu ~u 1 ũ! O
~i!

w ~i!@û~u 2 ũ!#c ~i!~u , ũ!

1 û2E
0

t

dt9E
0

t9

duE
0

t

d ũ2~t 1 t9 2 u 2 ũ!

z O
~i!

w ~i!@û~u 2 ũ!#c ~i!~t9 2 u , t 2 ũ!

2 û2 E
0

t

dt9E
0

t9

duE
0

t

dt0E
0

t0

d ũ

z O
~i!

w ~i!@û~u 2 ũ!#c ~i!~t9 2 u , t0 2 ũ! 1 23

Appendix C: Triple-Porosity Model
For the derivation of the effective transport parameters of

the homogeneous triple-porosity model, Laplace and Fourier
transforms are applied to the basic equations (23).

f~ x , s! 5E
0

`

e2stf~ x , t! dt f~k , t! 5E e2ikxf~ x , t! dx (30)

Using the initial and boundary conditions (4) and (5) (for both
immobile zones), the following transformed solution is ob-
tained:

g~k , s! 5
s2 1 ~a1 1 a2!s 1 a1a2

s3 1 ps2 1 qs 1 r

where

p 5 ~kD̂k 1 iûk 1 a1 1 a2 1 a2f2 1 a1f1!

q 5 ~kD̂k 1 iûk!@a1 1 a2 1 a1a2 1 a1a2~f1 1 f2!# (31)

r 5 ~kD̂k 1 iûk!a1a2

The Laplace transform can be inverted analytically. To this end
the denominator of (31) is factorized, s3 1 ps2 1 qs 1 r 5
(s 1 A1)(s 1 A2)(s 1 A3). Using Cardan’s formula
[Abramowitz and Stegun, 1972], one finds for Aj

A1 5 2~v 1 w! 1
p
3 A2,3 5

v 1 w
2 7 i Î3

~v 2 w!

2 1
p
3

v 5 S2
p3

27 1
pq
6 2

r
2 1 ÎyD 1/3

w 5
p2/3 2 q

v

y 5 S q 2 p2/3
3 D 3

1 S p3

27 2
pq
6 1

r
2D

2

The inverse Laplace-transform is given by Abramowitz and
Stegun [1972]
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g~k , t! 5
1

~ A1 2 A2!~ A2 2 A3!~ A3 2 A1!

z @e2A1t@2A1
2~ A2 2 A3! 1 ~a1 1 a2! A1~ A2 2 A3!

1 a1a2~ A3 2 A2!#

1 e2A2t@2A2
2~ A3 2 A1! 1 ~a1 1 a2! A2~ A3 2 A1!

1 a1a2~ A1 2 A3!#

1 e2A3t@2A3
2~ A1 2 A2! 1 ~a1 1 a2! A3~ A1 2 A2!

1 a1a2~ A2 2 A1!## (32)

From g(k , t) the spatial moments are calculated by differen-
tiation with respect to the Fourier variable ki [Goltz and Rob-
erts, 1987]. With the aid of the algebra software mathematica,
we analytically derived the time-dependent effective transport
parameters. Plots over time are easily obtained from the rather
complex results. However, it seems to be impossible to get
explicit expressions for the large-time limits. We therefore
followed a different approach in which we examined the
Laplace transform of (23) for large times, casting them into a
dual-porosity form. Through comparison with the correspond-
ing equations of the homogeneous dual-porosity model we get
the expressions (24) and (25) for the effective transport pa-
rameters [Reichle, 1996].
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